gefunden und gekürzt zusammengestellt von Ute Lenke
A
Aktorik: Teilgebiet der Antriebstechnik, das sich mit dem Erzeugen einer Bewegung oder Verformung beschäftigt. Aktoren wandeln Signale, die etwa von einem Steuerungscomputer ausgehen, in physikalische Effekte um, insbesondere in mechanische Bewegungen. Im Kontext Lernender Systeme können Aktionen auch rein digital umgesetzt werden. Aktorik ist neben Sensorik und Selbstregulation eine der drei Hauptkomponenten von autonomen Systemen.
Ein Algorithmus ist eine genaue Berechnungsvorschrift für einen oder mehrere Computer, eine Aufgabe zu lösen. Eine besondere Klasse von Algorithmen sind Lernalgorithmen: Dabei handelt es sich um Verfahren des maschinellen Lernens, die aus Beispieldaten (Lerndaten oder Trainingsdaten) ein Modell abstrahieren, das auf neue Beispieldaten angewendet werden kann.
Assistenzsysteme: Softwaresysteme, die den Menschen in bestimmten Situationen oder bei bestimmten Handlungen unterstützten. Sie analysieren dazu die gegenwärtige Situation und treffen gegebenenfalls darauf aufbauend Vorhersagen. So werden sie mit Hilfe von Methoden des maschinellen Lernens kontextsensitiv und können sukzessive besser mit Menschen interagieren. Um den Nutzer nicht zu überlasten, sollte sich die Interaktion seinem natürlichen Handlungsablauf anpassen und die Ausgabe komprimiert vorliegen. Assistenzsysteme können vom Menschen aktiviert und von ihm übersteuert werden. Sie sind heute bereits weit verbreitet und zu unterscheiden von automatisierten Systemen und autonomen Systemen.
Automatisierte Systeme: Maschinen, Roboter und Softwaresysteme, die einen vorgegebenen Handlungsablauf ausführen. Sie können dabei weder den Ablauf ändern oder anpassen noch die Folgen einer Aktion prognostizieren. Dadurch unterscheiden sie sich von autonomen Systemen bzw. Lernenden Systemen.
Automatisierungsstufe: Bezeichnet den Automatisierungsgrad eines Systems. Je höher dieser ist, desto weniger Überwachung und Kontrolle durch den Menschen ist nötig. Man unterscheidet ferngesteuerte (teleoperierte) Systeme, Assistenzsysteme, automatisierte Systeme und autonome Systeme. Bei Fahrzeugen besteht bereits eine normierte Einteilung in teil-, hoch- und vollautomatisierte Systeme.
Autonome Systeme: Maschinen, Roboter und Softwaresysteme gelten als autonom, wenn sie ohne menschliche Steuerung und detaillierte Programmierung ein vorgegebenes Ziel selbständig und an die Situation angepasst erreichen. Autonome Systeme haben die Fähigkeit sich der Umwelt anzupassen, zu lernen und gegebenenfalls mit anderen Systemen oder Menschen zu kooperieren. Sie nehmen ihre Umgebung über Sensoren wahr (Sensorik), generieren proaktiv, situationsgerecht und in Echtzeit eine angemessene Aktion (Selbstregulation) und führen diese über Aktoren aus (Aktorik). Jedes autonome System ist ein Lernendes System, denn die Lernfähigkeit ist für die Anpassung des Handlungsablaufs notwendig. Allerdings sind nicht alle Lernenden Systeme autonom, sondern werden teilweise weiterhin bewusst von Menschen gesteuert (z.B. intelligente Prothesen).
Autonomes Fahren: Beschreibt nach der normierten Einteilung der Automatisierungsstufen von Fahrzeugen die höchste Stufe „fahrerlos“: Dabei übernimmt das System die Aufgaben des Fahrers in vollem Umfang, auf allen Straßentypen sowie in allen Geschwindigkeitsbereichen und Umfeldbedingungen.
B
Big Data: Datenmengen, die sich auszeichnen durch ihr Volumen (Volume), die Vielfalt der Datentypen und Quellen (Variety), die Geschwindigkeit, mit der sie anfallen (Velocity) sowie die Unsicherheit bezüglich der Qualität der Daten (Veracity). Oft handelt es sich dabei um größtenteils unstrukturierte Daten, die etwa von sozialen Netzwerken oder mobilen Geräten stammen (IoT). Ein weiterer Aspekt von Big Data umfasst die Lösungen und Systeme, die dabei helfen, mit diesen Datenmengen umzugehen, um darin beispielsweise neue Muster und Zusammenhänge zu erkennen.
Bot: Computerprogramm, das weitgehend automatisch wiederkehrende Aufgaben abarbeitet. Beispiele, die vom maschinellen Lernen profitieren könnten, sind Chatbots, Social Bots und Gamebots (aus: Maschinelles Lernen/Fraunhofer 2018).
C
Chat Bot: Virtuelle Dialogsysteme, die zunehmend im Kundenservice und für Benutzerschnittstellen im Allgemeinen eingesetzt werden. Über eine Textein- und Textausgabemaske (z.B. ein Dialogfenster auf einer Website) kommunizieren sie in natürlicher Sprache mit dem Menschen. Durch Methoden des maschinellen Lernens können Chatbots aus Eingaben ständig dazu lernen – um etwa die Stimmlage des Menschen zu interpretieren oder personalisierte Antworten zu geben.
CPU (Central Processing Unit, deutsch: zentrale Prozessoreinheit) ist der Hauptprozessor eines Computers, der für die Berechnung und Steuerung aller wichtigen Vorgänge, Anfragen sowie Ein- und Ausgaben des Computers zuständig ist (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Cyber Physical Systems: In Cyber-physischen Systemen sind mechanische Komponenten, Software und moderne Informationstechnik über Netzwerke (z.B. das Internet) miteinander verbunden. Dies ermöglicht es, die Infrastrukturen zu steuern, regeln und kontrollieren und erlaubt einen Informationsaustausch in Echtzeit. Einsatzgebiete sind zum Beispiel die Produktfertigung und das autonome Fahren.
D
Data Mining: Einsatz von Methoden der Statistik oder des maschinellen Lernens, um neue Zusammenhänge und Muster in einer Datenmenge aufzuspüren. Ziel ist es beispielsweise, Empfehlungen für Entscheidungen zu geben oder Vorhersagen zu treffen. Genutzt werden dazu beispielsweise Clusteranalysen, Entscheidungsbäume, aber auch künstliche neuronale Netze.
Data Science: Gewinnung von Wissen aus Daten. Data Science bildet dabei die gesamte „Daten-Wertschöpfungskette“ ab: von der Erhebung und Aufbereitung über die Modellbildung, die auch mit Hilfe von Methoden des maschinellen Lernens erfolgt, bis zur Anwendung der Modelle, etwa für die Unterstützung von Entscheidungen.
Datenbereinigung: Verfahren zum Entfernen oder Korrigieren von Datenfehlern wie Dopplungen, Formatierungsfehlern oder fehlerhaften, unvollständigen Datensätzen in Datenbanken (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Deep Learning: Methode des maschinellen Lernens in künstlichen neuronalen Netzen. Diese umfassen mehrere Schichten – typischerweise eine Eingabe- und Ausgabeschicht sowie mehr als eine „versteckte“ dazwischenliegende Schicht. Die einzelnen Schichten bestehen aus einer Vielzahl künstlicher Neuronen, die miteinander verbunden sind und auf Eingaben von Neuronen aus der jeweils vorherigen Schicht reagieren. In der ersten Schicht wird etwa ein Muster erkannt, in der zweiten Schicht ein Muster von Mustern und so weiter. Je komplexer das Netz (gemessen an der Anzahl der Schichten von Neuronen, der Verbindungen zwischen Neuronen sowie der Neuronen pro Schicht), desto höher ist der mögliche Abstraktionsgrad – und desto komplexere Sachverhalte können verarbeitet werden. Angewendet wird Deep Learning bei der Bild-, Sprach- und Objekterkennung sowie dem verstärkenden Lernen.
E
Effiziente Suche: Da KI oft einen großen Raum möglicher Lösungen durchsuchen muss, ist die effiziente Gestaltung von Suchalgorithmen ein wichtiger Bestandteil von KI. Beispiele für effiziente Suchalgorithmen sind beispielweise A* oder die Monte-Carlo-Baumsuche, die etwa beim verstärkenden Lernen eingesetzt werden kann (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Eingebettetes System: (Englisch: Embedded System). Ein Computersystem, das in komplexe mikroelektronische bzw. mechatronische Systeme (Geräte, Anlagen und Maschinen etc.) eingebettet ist. Meist führt es eine einzelne Aufgabe aus, wie etwa die interaktive Steuerung bzw. Regelung des Systems. Eingebettete Systeme werden vielseitig eingesetzt, u.a. in Haushaltsgeräten oder in der Automatisierungstechnik (Prozessregelung, Robotik, Bluetooth etc.) (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Erklärbare KI: Black-Box-Modelle, wie insbesondere tiefe künstliche neuronale Netze, sind für Menschen nicht nachvollziehbar. Die erklärbare KI sucht nach Möglichkeiten, die versteckte Logik oder die einzelnen Ausgaben besser nachvollziehbar oder erklärbar zu machen (aus: Maschinelles Lernen/Fraunhofer 2018).
Expertensystem: Computerprogramm, das Wissen zu einem speziellen Gebiet repräsentiert, anreichert und daraus zu einem konkreten Problem automatisch Schlussfolgerungen ziehen kann. Dazu muss das Expertenwissen in Form von Fakten und Regeln (Wenn-Dann-Aussagen) formalisiert und eingegeben werden. In einem wissensbasierten Expertensystem lässt sich auch heuristisches Wissen formulieren und – je nach der zu Grunde liegenden Logik – auch unsicheres Wissen.
F
Ferngesteuertes System: Maschinen, Roboter und Softwaresysteme, die durch den Menschen aus der Ferne gesteuert und häufig für Arbeiten in lebensfeindlichen Umgebungen eingesetzt werden. Sie sind zu unterscheiden von Assistenzsystemen, automatisierten Systemen und autonomen Systemen.
G
GPU (Graphics Processing Unit; deutsch: Grafikprozessor) ist ein Prozessor, der auf die Berechnung von Grafiken und Bilddaten spezialisiert und optimiert ist. Er wird in Computern, Servern, Smartphones, Spielekonsolen und Tablets eingesetzt. Grafikprozessoren finden häufig Anwendung bei Deep Learning, weil ihre Architektur die Beschleunigung dieser Lernverfahren erlaubt (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
I
Interaktion: Interaktion ist ein Forschungsfeld der KI, das sich mit multimodalen und -medialen, benutzerorientierten Modellierungen von Anwendungen beschäftigt. Ziel ist es, eine möglichst weitreichende Kommunikation zwischen Mensch und Maschine zu ermöglichen.
Internet der Dinge: Zunehmende Vernetzung von Werkzeugen, Geräten, Sensoren, Fahrzeugen etc. durch eingebaute Computersysteme sowie die Vergabe von eindeutigen digitalen Kennungen (IP-Adresse). Mit Hilfe ihrer Sensoren erheben die vernetzten Geräte Daten, die sie untereinander sowie über das Internet austauschen und zur Verfügung stellen können.“ Dadurch entstehen extrem große Datenmengen (Big Data), die wiederum Grundlage für Lernende Systeme darstellen können.
K
Künstliche Intelligenz (KI): Eine allgemein akzeptierte Definition zu Künstlicher Intelligenz (KI) gibt es nicht. KI ist zum einen ein Teilgebiet der Informatik, das versucht, mit Hilfe von Algorithmen kognitive Fähigkeiten wie Lernen, Planen oder Problemlösen in Computersystemen zu realisieren. Begründet wurde der Begriff Artificial Intelligence im Zuge des Dartmouth Workshops (1956), der auch heute noch die moderne KI-Forschung prägt. Das internationale Standardlehrbuch für Künstliche Intelligenz von Russel/Norvig behandelt folgende Forschungsfelder:
- Problemlösen
- Wissensrepräsentation und Schlussfolgern
- Unsicherheit und Schlussfolgern
- Maschinelles Lernen
- Wahrnehmung und Sehen
- Verstehen und Generieren von natürlicher Sprache
- Interaktion
- Robotik
Der Begriff KI steht zugleich für Systeme, die ein Verhalten zeigen, für das gemeinhin menschliche Intelligenz vorausgesetzt wird. Ziel moderner KI-Systeme (Lernende Systeme) ist es, Maschinen, Roboter und Softwaresysteme zu befähigen, abstrakt beschriebene Aufgaben und Probleme eigenständig zu bearbeiten und zu lösen, ohne dass jeder Schritt vom Menschen programmiert wird. Dabei sollen sich die Systeme auch an veränderte Bedingungen und ihre Umwelt anpassen können. In diesem Sinne schafft Künstliche Intelligenz die Voraussetzungen für Lernende Systeme.
Die Lernfähigkeit der Systeme wurde bereits zu Beginn der KI-Forschung als grundlegende kognitive Fähigkeit definiert. Es ist jedoch schwierig, abschließend zu bestimmen, was als „intelligent“ gilt. Abhängig vom jeweiligen Stand der Technik entwickelte sich daher stets das Verständnis darüber weiter, was als KI bezeichnet wird.
Künstliche neuronale Netze (KNN): Modelle des maschinellen Lernens, die durch Aspekte des menschlichen Gehirns motiviert wurden. Sie bestehen aus in Software realisierten Schichten von Knoten, die als künstliche Neuronen bezeichnet werden. Die einzelnen Verbindungen zwischen den Neuronen haben eine numerische Gewichtung, die während des Trainingsprozesses angepasst wird, so dass die Ergebnisse immer besser werden. Von Schicht zu Schicht entstehen dabei immer abstraktere Repräsentationen der Eingabe, so dass bei einer sehr hohen Anzahl von Schichten (Deep Learning) sehr komplexe Muster abgebildet und erkannt werden können.
L
Lernende Systeme sind Maschinen, Roboter und Softwaresysteme, die abstrakt beschriebene Aufgaben auf Basis von Daten, die ihnen als Lerngrundlage dienen, selbstständig erledigen, ohne dass jeder Schritt spezifisch vom Menschen programmiert wird. Um ihre Aufgabe zu lösen, setzen sie von Lernalgorithmen trainierte Modelle ein. Mit Hilfe des Lernalgorithmus können viele Systeme im laufenden Betrieb weiterlernen: Sie verbessern die vorab trainierten Modelle und erweitern ihre Wissensbasis.
Lernende Systeme basieren auf Methoden der Künstlichen Intelligenz (KI), genauer: des maschinellen Lernens. Vor allem durch die Fortschritte im Deep Learning entwickelten sich Lernende Systeme in den letzten Jahren zum dynamischsten Bereich der KI-Forschung und -Anwendung
M
M2M-Kommunikation: Kommunikation zwischen zwei Maschinen.
Maschinelles Lernen ist eine grundlegende Methode der Künstlichen Intelligenz (KI). Sie zielt darauf, dass Maschinen ohne explizite Programmierung eines konkreten Lösungswegs automatisiert sinnvolle Ergebnisse liefern. Spezielle Algorithmen lernen aus den vorliegenden Beispieldaten Modelle, die dann auch auf neue, zuvor noch nicht gesehene Daten angewendet werden können. Dabei werden drei Lernstile unterschieden: überwachtes Lernen, unueberwachtes Lernen und verstärkendes Lernen. Maschinelles Lernen mit großen neuronalen Netzen wird als Deep Learning bezeichnet. Maschinelle Lernverfahren kommen zum Einsatz beim Data Mining, beim Generieren von Smart Data und in praktisch allen modernen KI-Systemen.
Mensch-Maschine-Interaktion: Austausch von Aktionen und Informationen zwischen Mensch und Maschine über eine Mensch-Maschine-Schnittstelle (User Interface). Gute Schnittstellen sollten an menschliche Bedürfnisse und Fähigkeiten angepasst sein, um eine gute Benutzbarkeit (Usability) bzw. eine hohe Nutzerzufriedenheit (User Experience) zu erreichen. Dem Design dieser Schnittstellen widmen sich verschiedene Wissenschaften wie die Informatik, die Kognitionswissenschaften oder die Psychologie.
Merkmalsauswahl: (Englisch: Feature Selection): Prozess, bei dem automatisch oder manuell die wichtigsten Merkmale ausgewählt werden. Irrelevante Merkmale in den Daten können die Genauigkeit der Modelle verringern und dazu führen, dass Modelle sich auf irrelevante Merkmale fokussieren (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Monte-Carlo-Tree Search: (Deutsch: Monte-Carlo-Baumsuche): Ein Suchalgorithmus, der versucht, mit geringem Rechenaufwand und kurzer Laufzeit Lösungen zu finden. Bei der Monte-Carlo-Methode wird versucht, sich mit vielen zufälligen Verzweigungen in der Suche der Lösung eines Problems anzunähern. Je höher die Anzahl der zufälligen Verzweigungen ist, desto präziser ist auch das Ergebnis. Diese Methode kann Anwendung finden, wenn eine genaue Berechnung einer Lösung unmöglich oder sehr aufwendig ist (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
O
Online-Datenstrom-Lernverfahren: Ein traditionelles Lernverfahren erstellt ein Modell aus statischen Eingabedateien. Bei neuen Trainingsdaten muss der Trainingsprozess des Modells von Grund auf neu gestartet werden. Es ist nicht in der Lage, sich in Echtzeit auf Verhaltensänderungen anzupassen. Demgegenüber kann ein Online-Lernverfahren ein Modell durch neue Trainingsdaten laufend anpassen, ohne den Trainingsprozess von Grund auf neu zu beginnen. Dies ist für viele Szenarien relevant, etwa bei sehr sensiblen oder personenbezogenen Trainingsdaten, die nicht offline verarbeitet werden dürfen (Gesundheitswerte) oder bei Datenströmen, die aufgrund ihrer Größe nicht gespeichert werden können (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Online-Lernen auf Datenströmen: Das Online-Lernen kommt ohne die konventionelle Einteilung in Trainingsdaten für die Modellentwicklung und Testdaten für die Modellbewertung aus. Online Lernen funktioniert also in Echtzeit und auf Datenströmen, die nicht abgespeichert werden.
P
Problemlösen: Das zielorientierte Problemlösen ist ein Forschungsfeld der KI. Bestimmte Aufgaben (z.B. Schach, Stundenplan, Tic-Tac-Toe) lassen sich durch eine Reihe von Aktionen beschreiben, die zu einem gewünschten Ziel führen. Jede Aktion ändert den aktuellen Zustand. Ziel ist es, eine Reihenfolge der Aktionen und Zustände zu finden, die vom Anfangs- zum gewünschten Endzustand führt.
R
Robotik: Der Begriff Roboter leitet sich ab vom tschechischen Wort für Arbeiten, „robota“. Ein Roboter ist ein System, dass dem Menschen Arbeit abnimmt. Allerdings werden nur solche Maschinen als Roboter bezeichnet, die physische Arbeit verrichten. Zur Steuerung von Robotern werden immer häufiger Lernende Systeme eingesetzt. Robotik ist ein Forschungsfeld der KI mit dem Ziel, Roboter zu entwickeln, die mittels Algorithmen autonom mit der physischen Welt interagieren.
S
Schwache KI: Systeme, die in einem spezifischen, eng definierten Kontext intelligent agieren und dort sogar menschliche Fähigkeiten übersteigen können. Beispiele für spezifische Anwendungen sind Strategiespiele wie Schach und Go oder Produktempfehlungen sowie medizinische Diagnosen. Sämtliche heute verfügbare Künstliche Intelligenz ist als schwache KI zu definieren. Das Gegenmodell ist die starke KI.
Selbstregulation: Fähigkeit von autonomen Systemen, sich an die Umgebung oder das Verhalten von Menschen anzupassen und eigene Aktionen zu korrigieren. Unterstützt wird die Selbstregulation durch Wahrnehmung und Interpretation, Planung und Planerkennung, Lernen und Schlussfolgern sowie Kommunikation und Kollaboration. Neben Aktorik und Sensorik ist Selbstregulation eine der drei Hauptkomponenten von autonomen Systemen.
Self-Supervised-Deep Network: Beruht auf dem Lernprozess des überwachten Lernens und auf der gleichen Architektur wie tiefe künstliche neuronale Netze. Während beim überwachten Lernen jedoch die Kennzeichnung von Trainingsdaten (Data Label) manuell vorgegeben werden, werden diese beim Self Supervised Learning automatisch von der Anwendung generiert (aus: Whitepaper der AG1/Maschinelles und Tiefes Lernen: Der Motor für “KI made in Germany”).
Sensoren: Technische Bauteile, die bestimmte physikalische oder chemische Eigenschaften und/oder die stoffliche Beschaffenheit ihrer Umgebung erfassen und in elektrische Signale umformen können. Neben Aktorik und Selbstregulation ist die Sensorik eine der drei Hauptkomponenten von autonomen Systemen.
Smart Data: Datenbestände, die mit Hilfe von Algorithmen/Lernalgorithmen aus sehr großen Datenmengen (Big Data) extrahiert wurden und sinnvolle Informationen enthalten.
Social Bots: Softwaresysteme, die als menschenähnliche Akteure mit Menschen auf digitalen Plattformen kommunizieren. Sie werden vor allem in sozialen Netzwerken und Chat-Programmen eingesetzt. Social Bots basieren zunehmend auf Lernenden Systemen.
Soft Bots / Software Roboter: Ein Computerprogramm, das selbstständig Aufgaben in einer virtuellen Umgebung ausführt. Es archiviert z.B. Dateien oder indexiert Webseiten (Web Bot). Das Programm nimmt dazu Informationen auf, analysiert sie und interagiert mit anderen Programmen oder auch mit Menschen (Chat Bot bzw. Social Bot).
Sprachassistenzsysteme: Softwaresysteme, die mittels Spracherkennung und -analyse die Anweisungen des Anwenders aufnehmen und so eine intuitive Schnittstelle bilden (Mensch-Maschine-Interaktion). Fortschrittliche Sprachassistenten können Fragen beantworten und Dialoge führen. Sie werden häufig als Intelligenter Persönlicher Assistent (IPA) bezeichnet.
Starke KI: Hypothetische KI-Systeme, die mindestens über menschenähnliche Intelligenzleistung in allen Bereichen und nicht nur in eng definierten Anwendungsfeldern (schwache KI) verfügen. Eine Künstliche Superintelligenz wäre dem intelligentesten Menschen weit überlegen und wird damit als ein Kernelement für die Realisierung der technologischen Singularität gesehen.
T
Trolley-Problem: Philosophisches Gedankenexperiment, das eine Dilemma-Situation beschreibt, in der beide Wahlmöglichkeiten zu einem unerwünschten Ergebnis führen. Ein typischer Fall: Eine führerlose Straßenbahn (engl.: trolley) rast auf fünf am Gleis festgekettete Menschen zu und kann nicht gestoppt werden. Durch die aktive Umstellung einer Weiche könnte die Bahn auf ein anderes Gleis umgeleitet werden, an das eine Person angekettet ist. Ziel ist es, (trotz geringer Wahrscheinlichkeit derartiger Fälle) zum Nachdenken über ethische Dilemmata anzuregen.
Turing-Test: Vom britischen Mathematiker Alan Turing entwickelter Test, um festzustellen, ob eine Maschine als intelligent zu bewerten ist. Ein menschlicher Fragesteller kommuniziert dabei über eine Tastatur mit einem menschlichen Gesprächspartner und einer Maschine. Kann er am Ende nicht sagen, welcher Gesprächspartner die Maschine ist, gilt diese als intelligent.
U
Überwachtes Lernen: Lernalgorithmen, die als Trainingsmaterial neben Rohdaten auch die erwarteten Ergebnisse erhalten. Weicht die Ausgabe des trainierten Modells vom gewünschten Ergebnis ab – wenn beispielsweise eine Tulpe als Rose identifiziert wird – passt der Lernalgorithmus das Modell an. Ziel ist es, dem Netz durch unterschiedliche Ein- und Ausgaben die Fähigkeit anzutrainieren, selbst Verbindungen herzustellen.
Unüberwachtes Lernen: Lernalgorithmen, die in künstlichen neuronalen Netzen, bei dem kein Prognoseziel vorgegeben ist, nur die Rohdaten erhalten. Sie erzeugen ein Modell, das die Eingaben abstrakt beschreibt und Vorhersagen ermöglicht. Das Netz erstellt dann selbständig Klassifikatoren, nach denen es die Eingabemuster einteilt. Ziel ist es, in einem Datensatz interessante und relevante Muster zu erkennen oder die Daten kompakter zu repräsentieren.
V
Verstärkendes Lernen: Prozess, bei dem ein Lernendes System Entscheidungen trifft, auf deren Basis es anschließend handelt. Dazu verwendet es einen Algorithmus der lernt, die Erfolgsaussichten der einzelnen Aktionen in den verschiedenen Situationen besser einzuschätzen. Für die gewählten Aktionen erhält es positives oder negatives Feedback. Ziel des Systems ist, möglichst viel positives Feedback zu erhalten. Beim Deep Reinforcement Learning werden dazu künstliche neuronale Netze als Modelle verwendet, die man erfolgreich in Spielen eingesetzt hat (z.B. Go, Poker, Atari).
Verstehen und Generieren von natürlicher Sprache: Dieses Forschungsfeld der KI zielt darauf, eine möglichst weitreichende Kommunikation zwischen Mensch und Maschine zu ermöglichen. Dazu müssen letztere dazu befähigt werden, natürliche Sprache zu erfassen, zu verarbeiten, zu verstehen und auch zu generieren.
W
- Wahrnehmung und Sehen
- Wissensbasierte Expertensysteme
- Wissensrepräsentation und Schlußfolgern
Wahrnehmung und Sehen: Die Erkennung und Segmentierung von Objekten ist ein Forschungsfeld der KI. Die Fähigkeit, visuelle Informationen zu verarbeiten, ist eine Grundbedingung für viele automatisierte Prozesse. Mithilfe von Regeln und Algorithmen werden Bilder und andere sensorische Eingaben verarbeitet, interpretiert und auch generiert.
Wissensbasiertes Expertensystem: Ziel dieses KI-Forschungsfeldes ist es, Wissen über die Welt maschinenlesbar so darzustellen, dass ein System es für die Lösung komplexer Aufgaben nutzen kann – beispielsweise, um eine Diagnose zu einer Krankheit zu stellen oder einen Dialog in natürlicher Sprache zu führen. Siehe auch Expertensystem.
Quelle:
https://www.ki-konkret.de/glossar.html
aus
KI KONKRET. Künstliche Intelligenz — einfach erklärt
Copyright (frei für journalistische Zwecke):
PLS – Plattform Lernende Systeme